
LibrePCB Documentation
2023-09-24

Table of Contents
Installation . 2

Official Binaries . 2

Distribution Packages . 2

Build From Sources . 2

On Windows . 2

Online Installer . 2

Portable Package . 3

On Linux. 3

Portable AppImage (x86_64) . 3

Snap Package (multi-arch). 3

FlatPak (multi-arch) . 4

Online Installer (abandoned) . 4

On macOS. 4

Portable Package . 4

Online Installer (abandoned) . 5

Build From Sources . 5

Requirements . 5

Get the Sources. 5

Build LibrePCB . 6

Additional Resources . 6

Quickstart Tutorial . 7

Create a Workspace . 7

Install Remote Libraries . 9

Create a Local Library . 11

Create a PCB Project . 13

Create Schematics . 16

Create Board . 19

Order PCB . 28

Create Library Elements. 32

Concept Overview . 33

Our Example: LMV321LILT. 34

Component Category . 35

Symbol . 36

Component . 41

Package Category. 46

Package . 47

Device . 53

User Manual. 55

Command-Line Interface . 56

Installation. 56

Binary Releases . 56

Docker Image . 57

Show Help Text. 57

Command "open-library" . 57

Examples . 58

Command "open-project" . 59

Examples . 61

Library Conventions . 63

Symbol Conventions . 63

Generic vs. Specific . 63

Naming. 63

Origin . 64

Outline . 64

Pin Placement. 65

Pin Naming . 65

Text Elements . 65

Grab Area . 66

Package Conventions . 66

Scope. 66

Naming. 67

Pads. 67

Footprints . 68

Origin . 69

Orientation . 69

Legend Layer . 70

Documentation Layer. 70

Text Elements . 71

Development . 74

Welcome to the documentation of LibrePCB 1.0.0!


The documentation is still work in progress. Help us writing beautiful
documentation on GitHub!


Offline Documentation

For offline- or printable documentation, use the PDF download link at the bottom
left of the page.

Chapters:

• Installation

• Quickstart Tutorial

• User Manual

• CLI Reference

• Library Conventions

• Development

Didn’t find what you’re looking for? Contact us!

1

https://github.com/LibrePCB/librepcb-doc
https://librepcb.org/discuss/

Installation

Official Binaries
We provide official binary releases for the following operating systems:

• Windows

• Linux

• macOS

Distribution Packages
In addition, we are officially maintaining the following packages:

• Snap on Snapcraft

• Flatpak on Flathub

For other systems, a LibrePCB package might be provided by a package maintainer, either partially
related or unrelated to the LibrePCB developers. We are aware of the following packages:

• Arch Linux AUR Package (builds from source)

• NixOS Package

• Gentoo Package

• Homebrew Cask Package

• OpenPandora Package

 You’re a LibrePCB package maintainer? Ask us to list your package here!

Build From Sources
Since LibrePCB is a free & open-source application, you can compile it by yourself if you like. This
allows to run LibrePCB even on systems where no pre-built binaries are available. See instructions
at Build From Sources.

On Windows

Online Installer

The recommended way to install LibrePCB is to use the online installer. It provides the following
features:

• Installs a maintenance tool to easily download and install updates.

• Creates start menu entries for LibrePCB and the maintenance tool.

2

https://snapcraft.io/librepcb
https://flathub.org/apps/details/org.librepcb.LibrePCB
https://aur.archlinux.org/packages/librepcb
https://search.nixos.org/packages?channel=unstable&show=librepcb&from=0&size=50&type=packages&query=librepcb
https://packages.gentoo.org/packages/sci-electronics/librepcb
https://formulae.brew.sh/cask/librepcb
https://repo.openpandora.org/?page=detail&app=librepcb
https://librepcb.org/discuss/

• Optionally registers *.lpp files, so LibrePCB projects can be opened with a double-click in the
file manager.

Just download and run librepcb-installer-1.0.0-windows-x86.exe. Afterwards you’ll find
LibrePCB in your start menu.

Portable Package

Alternatively you could run LibrePCB without installing it. But then you don’t get an update
mechanism, no start menu entries are created, and *.lpp files will not be registered.

Download and extract librepcb-1.0.0-windows-x86.zip, then run the contained file bin\librepcb.exe.

On Linux
Due to the diversity of the Linux ecosystem, there are many different ways to install LibrePCB. The
order of the options provided below do not reflect any recommendation.



If you’re unsure, here our recommendations:

• On Ubuntu: Snap Package

• On a Raspberry Pi: Flatpak

• Everywhere else: Portable AppImage

Portable AppImage (x86_64)

The AppImage is a single-file portable package which runs on most Linux distributions. It is fully
functional without installing anything on your system, but it does not provide an update
mechanism.

Download librepcb-1.0.0-linux-x86_64.AppImage, make it executable and run it:

wget "https://download.librepcb.org/releases/1.0.0/librepcb-1.0.0-linux-
x86_64.AppImage"
chmod +x ./librepcb-1.0.0-linux-x86_64.AppImage
./librepcb-1.0.0-linux-x86_64.AppImage

If you’re not familiar with the terminal: Right-click on the downloaded file and then check
something like Allow executing file as program or Run as executable. Afterwards double-click the file
to run it.

Snap Package (multi-arch)

For distrubutions like Ubuntu which use the Snap package manager, probably the easiest way is to
install the LibrePCB Snap package.

On Ubuntu, just open the Ubuntu Software application (app store), search for LibrePCB and install

3

https://download.librepcb.org/releases/1.0.0/librepcb-installer-1.0.0-windows-x86.exe
https://download.librepcb.org/releases/1.0.0/librepcb-1.0.0-windows-x86.zip
https://download.librepcb.org/releases/1.0.0/librepcb-1.0.0-linux-x86_64.AppImage
https://snapcraft.io/
https://snapcraft.io/librepcb

it. Alternatively, run this command from in the terminal:

sudo snap install librepcb



Some users reported that LibrePCB crashes when installed as a Snap package. It
seems to be a problem related to fonts and Snap. If you experience this issue, the
following workaround might help:

sudo rm /var/cache/fontconfig/*
rm ~/.cache/fontconfig/*
fc-cache -r

For more information about Snap, check out its documentation.

FlatPak (multi-arch)

LibrePCB is also available as a FlatPak package from FlatHub. Assuming you have followed FlatPak
setup, you can configure FlatHub and install LibrePCB as follows:


After installing FlatPak, make sure to reboot the computer before executing the
follwing commands! Otherwise LibrePCB might not appear in your application
launcher.

flatpak remote-add --if-not-exists flathub
https://flathub.org/repo/flathub.flatpakrepo
flatpak install flathub org.librepcb.LibrePCB

Online Installer (abandoned)

Note that starting with LibrePCB 1.0, we do no longer provide an installer for Linux. If you installed
a previous LibrePCB release with the installer, please uninstall it with the LibrePCB Maintenance
Tool and install the latest release with a different installation method instead.

On macOS

Portable Package

To install LibrePCB, download the portable *.dmg file matching your CPU architecture:

• Intel (x86_64): librepcb-1.0.0-mac-x86_64.dmg

• Apple Silicon (arm64): librepcb-1.0.0-mac-arm64.dmg

Double-click the downloaded file in Finder. Then drag and drop the LibrePCB app onto the
"Applications" folder in Finder. Afterwards you’ll find LibrePCB in the Launchpad.

4

https://github.com/LibrePCB/LibrePCB/issues/989
https://snapcraft.io/docs
https://flatpak.org
https://flathub.org/apps/details/org.librepcb.LibrePCB
https://flatpak.org/setup/
https://flatpak.org/setup/
https://download.librepcb.org/releases/1.0.0/librepcb-1.0.0-mac-x86_64.dmg
https://download.librepcb.org/releases/1.0.0/librepcb-1.0.0-mac-arm64.dmg



Unfortunately we’re not able (yet) to officially sign the macOS binary. Therefore
macOS refuses to start LibrePCB by default. As a workaround, you need to run it

once with Right-click › Open on the LibrePCB application in the Launchpad. If this
doesn’t work, try it a second time.

Afterwards you should be able to run LibrePCB normally with a single click.

Online Installer (abandoned)

Note that starting with LibrePCB 1.0, we do no longer provide an installer for macOS. If you
installed a previous LibrePCB release with the installer, please uninstall it with the LibrePCB
Maintenance Tool and install the latest release with the Portable Package instead.

Build From Sources

Requirements

To compile LibrePCB, you need to install the following tools & libraries first:

• g++ >= 4.8, MinGW >= 4.8, or Clang >= 3.3 (C++11 support is required)

• Qt >= 5.5

• OpenCASCADE OCCT or OCE (optional)

• OpenGL Utility Library GLU (optional)

• zlib

• OpenSSL

• CMake 3.5 or newer

Get the Sources



It is very important to use the correct sources:

• Do NOT clone any branch (e.g. master) from our repository on GitHub!
These sources are not compatible with the stable file format of LibrePCB.

• Do NOT use the archives provided at the GitHub Releases page. These do not
include the submodules and thus can’t be compiled.

• It’s fine to clone the official release tag (current: 1.0.0) from our repository on
GitHub, just keep in mind to pass --recursive to also get all the submodules.

For convenience, we provide an official source archive which contains all the required files
(including submodules) and has stripped any unnecessary files: librepcb-1.0.0-source.zip

wget "https://download.librepcb.org/releases/1.0.0/librepcb-1.0.0-source.zip"
unzip ./librepcb-1.0.0-source.zip

5

http://www.qt.io/download-open-source/
https://www.opencascade.com/
https://en.wikipedia.org/wiki/OpenGL_Utility_Library
http://www.zlib.net/
https://www.openssl.org/
https://cmake.org/
https://download.librepcb.org/releases/1.0.0/librepcb-1.0.0-source.zip

cd ./librepcb-1.0.0

Build LibrePCB

Within the downloaded source directory, execute the following commands:

mkdir build && cd build
cmake ..
make -j8

Additional Resources

These are just the most important commands. For more details (e.g. the available configuration
flags), check out the following resources:

• README.md within the source archive

• Build instructions on our developers documentation

6

https://github.com/LibrePCB/LibrePCB/blob/master/README.md
https://developers.librepcb.org/d5/d96/doc_building.html

Quickstart Tutorial
This chapter provides a quick introduction into LibrePCB, starting from workspace initialization
and ending with how to order the designed PCB.

Create a Workspace
When starting LibrePCB the first time, a wizard asks you to open or create a workspace. The
workspace is just a directory where settings, libraries and (optionally) projects will be stored. Once
created, it can be used from all supported operating systems (i.e. it is platform independent) and
from any LibrePCB version.

You can just accept the default workspace location (you could still move it to another location
afterwards, if desired):

If the selected path does not contain a workspace yet, clicking on [ Next ] will show a page to
choose the most important settings:

7

It is recommended to select at least your preferred norm and length unit since these usually
depend on where you’re living.


You can change these settings at any time later in the control panel under Extras ›
Workspace Settings.

After clicking [ Finish ], the control panel shows up and you’re ready to start using LibrePCB!

8

Install Remote Libraries
Before you can start creating new projects, you need to add some libraries to your workspace.
Libraries contain various kinds of elements which can be added to schematics and boards (e.g.
symbols, footprints and devices).

Click on [ Library Manager ] in the control panel:

9

The library manager immediately fetches the list of available libraries from the Internet. Most of
these libraries are hosted at github.com/LibrePCB-Libraries.

The most important library is LibrePCB Base because it contains commonly used library elements
like resistors or diodes. It is highly recommended to install at least this library. However, you can
even simply install all the available libraries at once:

Later you can keep the installed libraries up to date exactly the same way. Just open the library
manager from time to time to see which libraries can be updated to a new version.



Dependencies between different libraries are automatically taken into account
when changing the selection. So for example if you select LibrePCB Connectors, the
LibrePCB Base Library will automatically be selected too because the connectors
library depends on it.



Downloaded (so-called remote-) libraries are always read-only because otherwise
local modifications could cause conflicts when updating the library the next time.
But this is no problem, just follow this tutorial to create your own local library
later. In a local library you can use or even override library elements from remote
libraries by specifying a higher version number.


If you are familiar with version control systems (e.g. Git) and want to use them to
manage your libraries (instead of the library manager), just clone the libraries into
the subdirectory data/libraries/local/ in your workspace.

After the selected libraries have been downloaded, they will appear in the list of installed libraries
on the left side of the library manager:

10

https://github.com/LibrePCB-Libraries

Note that after the libraries were installed, it takes a moment to create an index of all the contained
elements. This process automatically runs in background and is indicated with a progress bar at the
bottom right of all main windows. The installed libraries are ready to use once the progress bar
disappears.

Create a Local Library
In addition to the (read-only) remote libraries, you should create a personal, so-called local library.
This is the place where you’ll add your own symbols, footprints etc. later.

To do so, go to the Create local library tab, optionally enter some metadata (default values are good
enough) and click on [ Create Library ]:

11

If you’re curious how the library looks like, select your library on the left and then click on [ Open
Library Editor ] (or just double-click on your library):

You’ll see an empty library editor since the library doesn’t contain any elements yet.

Your workspace setup is now complete and ready to start creating your first PCB project! You
can close both the library editor and the library manager for now. We’ll come back to the library
editor later when we need to create our own library elements.

12

Create a PCB Project
In LibrePCB, schematics and boards are always part of a project, so before creating schematics and
boards you first need to create a project for every PCB. Click on [ New Project ] in the control panel:

Then specify some project metadata:

13



It’s recommended to store projects within the workspace subdirectory named
projects (the default location suggested by the wizard) because these projects are
then shown in the control panel file explorer, making them easy to locate and use.
But of course projects can be created at any other location as well.



A LibrePCB project consists of a whole directory on the file system. While it is
possible to manually add/modify files in that directory, generally you should avoid
adding large files (e.g. datasheets) since this could slow down some operations. It’s
better to store unrelated files outside of the project directory.

Now you can choose whether the project should be initialized with a first schematic page and
board, and how they are named. If you are unsure, just accept the default values:

14

After clicking on [ Finish ], the schematic- and board editors show up:

15

Create Schematics

Before starting with the board layout, a schematic will be needed. So let’s see how to draw a
schematic.

Add Frame

First, you may want to add a frame to the schematic. Click on [ Add Component ] in the toolbar and
select a schematic frame:

After clicking on [ OK ], the selected component is attached to the cursor. Click on the origin of your
schematics to place the frame at coordinate (0, 0).

Press Esc to finish the placement. The Add Component dialog pops up again to choose the next
component. Press Esc again to leave the tool.

Add Components/Devices

Now add all the resistors, capacitors, ICs etc. the same way to your schematic. However, for real
parts (in contrast to the schematic frame) the dialog lets you select a concrete device. Here an
explanation about the displayed information:

16

You can choose between adding a component a device or a part:

• Component: Defines the schematic symbol and netlist signals. It’s all you need in a schematic,
but it does not represent a concrete part and does not specify the package to be placed on the
board.

• Device: Defines the package to be used in the board. Basically it’s the combination of a
component and a package with a particular pinout.

• Part: Represents a real, orderable part. In addition to defining the package, it also defines the
exact MPN[1] which will appear in the BOM[2].

To add something to a board, you need to choose a device or a part. However, it’s your choice
whether to select it now or later when starting with the board layout. This allows to draw the
complete schematics even if various packages and devices do not exist yet in your libraries.


While placing components, press R to rotate or M to mirror. With Tab the focus is
moved into the toolbar to allow specifying a value.

Supply symbols like VCC or GND are added exactly the same way since these are ordinary library
elements as well. However, they are also provided in a dedicated toolbar for a quick access to the
most commonly used elements.



The Add Component dialog lists all the components, devices and parts available in
the libraries you have installed in your workspace. If you are missing something,
you either need to install more libraries or create your own library elements.

To create your own library elements, follow the linked tutorial. You can keep the
project open while working in the library editor. Afterwards, wait for the
background library scan to complete (indicated as a progress bar at the bottom
right of the window). Then the new library elements will appear in the Add
Component dialog and are ready to be used.

17

Draw Wires

Once your schematic contains some components, the pins can be connected with the [ Draw Wire ]
tool. Just click on a pin to start a new wire:



Pay attention to the circles around the pins. If a wire appears to be starting at a
pin, but the circle is visible, it is not connected.

The color of the pin circles even provide some more context:

• Red: Mandatory pin, i.e. needs to be connected to a wire (if not, an ERC[3]

warning is raised).

• Green: Optional pin, i.e. may or may not be connected, depending on the use-
case. No ERC error will be raised if left unconnected.

Add Net Labels

To keep schematics clean and readable, net labels may be added. They allow to explicitly specify net
names, and to create hidden connections between wires of the same net name.

1. Start the [ Add Net Label ] tool.

2. click on the wire where to attach the label.

3. Click to specify the label position.

 While placing labels, press R to rotate.

18


All wires in the whole project which have the same name assigned will
automatically be connected, even accross schematic pages.

Add More Sheets

For larger projects, you may want to split the schematics into multiple sheets for better readability.

Just add more sheets with Schematic › New Sheet, then add a frame and devices the same way. Use
supply symbols and net labels to connect nets across pages.

Electrical Rule Check

At latest when you’re finished with the schematics, you should check if there are no critical ERC
messages. The ERC does not need to be triggered since it is automatically updated.

Open the ERC dock with View › Go to Dock › Electrical Rule Check (ERC):

Click on [ ? ] to get some more information about a message. If you’re sure a message is not
relevant, you could approve it with [ ✔ ] but usually warnings/errors should be fixed instead of
approved.

Create Board

Once the schematic is (more or less) complete, you can start designing the PCB in the board editor.
If the board editor window is not opened already, click on the [ Board Editor ] toolbutton to open it.

Set Grid Properties

All board editor tools (e.g. the Draw Trace tool) work on a particular grid interval, i.e. the cursor
snaps on a multiple of that value. The value might depend on the task you’re working on so
probably you’ll need to change it several times while working on the board.

You can change it at any time with the [ Grid Properties ] toolbutton (or with F4):

19

Draw Outlines

The most important thing of the board is its outline. Generally there must be a single, closed
polygon on the Board Outlines layer. It is recommended to set its line width to 0.0mm since — in
contrast to many other polygons — this polygon does not represent any actual material but only the
outer dimension of the PCB.

If your PCB needs non-plated cut-outs (e.g. slots, windows, …), draw these polygons on the Board
Cutouts layer with a width of 0.0mm.



A simple board outline polygon is automatically added by LibrePCB when
creating a new project or board! So usually the only thing you need to do is to
resize it to the desired size. The instructions here are intended only to explain
more complicated scenarios and in case you want to re-draw the outline from
scratch.



All polygons on the Board Outlines and Board Cutouts layers shall represent the
actual board outlines (i.e. the edges), NOT the paths for the milling cutter! The PCB
manufacturer will automatically offset the outline polygons to calculate the actual
paths for the cutter.

20



Keep in mind that inner edges can only be produced with a specific minimum
radius (corresponding to the milling cutter diameter of the PCB manufacturer).
Although PCB manufacturers may produce your PCB anyway even if it contains
inner edges with no or too small radius, it’s highly recommended to draw all inner
edges with a proper radius. Often a radius of 1.2mm or more works fine, while a
smaller radius might lead to additional cost.

To draw polygons with arcs, open [ Properties ] from the polygon’s context menu
(right-click) and specify the vertex coordinates and angles manually.



A correct board outline is really crucial to avoid problems during the PCB
manufacturing process! Make sure to fulfil these rules:

• There’s exactly one polygon on the Board Outlines layer.

• Cut-out polygons (if there are any) are on the Board Cutouts layer and located
fully inside the outer board outline.

• There are no tangent or intersecting polygons on these two layers.

• The line width of those polygons is 0.0mm (optional, but recommended).

• Polygons are closed (start and end coordinates are exactly identical) and
consisting of a single polygon object (NOT multiple joined lines!).

• There are no other objects on these two layers.


An easy way to check if the board outline is valid is to review the PCB in the 3D

viewer. For that, open View › Toggle 2D/3D Mode or press Ctrl  +  3 .

21

Place Devices

For every component in the schematic, you need to place a device in the board (except schematic-
only components, like the schematic frame).

1. Open the Place Devices dock (View › Go to Dock › Place Devices).

2. Select a component to place.

3. Select the desired device for that component (not needed if the device is already specified in the
schematics).

4. Choose the exact footprint to place, if there are multiple. Most packages have only one
footprint — if not, the default footprint is pre-selected.

5. Click [ Add ] and place the device with the cursor on the board. Press R to rotate or F to flip to
the other board side while moving.

Repeat these steps until there are no more unplaced components.


If you want to use the same device and footprint for all instances of a particular
component, use the [ Add Similar ] button to add all at once.



If you can’t find the desired device for a component (or the device dropdown
is completely empty), you need to add the device to your local library first.
Continue with the library element creation tutorial and come back to the board
editor once the device is created.

By the way, it’s even possible to replace devices after adding them to the board. For example you
can replace a 0603 resistor by a 0805 resistor using the [ Change Device ] context menu item (right-
click):

22

Exactly the same way you can switch to a different footprint, just use the [ Change Footprint ]
context menu item instead.

Draw Traces

As soon as you add devices to the board, airwires will appear to show the missing traces. Start the
[ Draw Trace ] tool and specify the trace settings in the toolbar. Then click on a pad to start a new
trace:


The cursor automatically snaps on objects of the same net. If this is not desired,
hold Shift while drawing.

23



With the right mouse button you can cycle through the different routing modes.

To switch to a different copper layer while drawing a trace, press Page Down (next
lower layer) or Page Up (next higher layer). This will automatically insert a via if
needed.

There are also shortcuts to change trace & via properties, see Help › Keyboard
Shortcuts Reference for details.

Add Planes (Copper Pours)

If you need planes (also known as copper pours, i.e. filled copper areas to create electrical
connections), proceed as follows:

1. Start the [ Draw Plane ] tool.

2. Specify the electrical net and copper layer in the toolbar.

3. Add vertices with mouse clicks. To fill the whole board, an approximate outline is good enough
since it will be clipped automatically.

One the plane area is calculated, it appears with a filled area. As you can see, the area is
automatically clipped to the board outline:

24



In case your plane does not get filled, make sure:

• The board outline polygon exists and fulfils all the rules listed above.

• The plane is located within the board outlines.

• There is at least one copper element of the same net located within the plane
area — e.g. a via, pad or trace. Plane areas which are not connected to any
copper element are automatically discarded to avoid electrically "floating"
copper areas on the board. If you prefer to add these copper areas anyway,
open [ Properties ] from the plane context menu (right-click) and check the
Keep Islands option.


To avoid plane areas cluttering up the view too much, they can be hidden with

View › Hide All Planes. They will still be there, they are just hidden on the screen.

To interconnect planes on different copper layers, just place vias with the [ Add Via ] tool within
the plane areas. Make sure the vias have the same net as the plane. Vias will also prevent plane
fragments from disappearing if there’s no other copper element within the plane and the Keep
Islands option is disabled.

Add Non-Plated Holes

Non-plated holes can be added to the board with the [ Add Hole ] tool. Just specify the diameter and
click on the desired position. Afterwards, use the [ Properties ] context menu item to specify the
exact position if needed (e.g. if not located on the grid interval).

Design Rule Check

Once your design is complete, you should run the design rule check (DRC) to ensure there are no
critical mistakes.

But first you should check or adjust the design rules which are used to calculate via/pad restrings

25

and cream/stop mask clearances. For that, open Board › Board Setup or press F7 and navigate to
the Design Rules tab:



Actually it’s better to set the design rules before drawing traces and adding planes
since they affect the clearances. It is only moved to the end of the boards tutorial to
keep the focus on the design workflow.

Fortunately, usually the default values are fine. So if you’re unsure about these
values, just keep the defaults.

Afterwards, navigate to the next tab called DRC Settings and configure the settings according the
capabilities of your desired PCB manufacturer:

26

If you’re unsure, just skip this for now (the default values are usually fine).

Once all settings are configured, open Board › Design Rule Check or press F8 to run the DRC. This
can take some time. The DRC dock widget should automatically appear to display the result:

27

Then just click on a message to highlight the issue in the board editor. Or click on [ ? ] to get some
more information about a message. If you’re sure a message is not relevant, you could approve it
with [ ✔ ] but usually warnings/errors should be fixed instead of approved.


There’s also a tool named Quick Check which runs only the most important
checks of the DRC. It is intended to be run regularly while working on the layout
and can be triggered with Shift  +  F8 .

3D Preview

Once you fixed all ERC issues, it’s highly recommended to review the PCB in the 3D viewer. If
anything with the board outline, the device placement or something like that is not correct, chances

are high you will notice that in the 3D view. Click on View › Toggle 2D/3D Mode or press Ctrl  +  3 to
open it (press it two times for fullscreen):

Note that not all packages have a 3D model assigned, like the OpAmp in our example. But no
worries, this does not cause any issues.

If everything looks as expected, you’re ready to order the PCB!

Order PCB

The easiest and fastest way to order the PCB is LibrePCB Fab. It automatically exports and uploads
all the necessary production data files without annoying you with the whole traditional production
data workflow. See fab.librepcb.org/about for more information.


You prefer to manually generate the production data files? Or you want to use
a PCB manufacturer not available at LibrePCB Fab? No problem! Just skip this

28

https://fab.librepcb.org/about

section and go to Generate Production Data.

LibrePCB Fab

To start the order process, click the [ Order PCB ] toolbutton in either the schematic- or board
editor:

With [ Upload Project ], the project is uploaded to our order service fab.librepcb.org. Then your
web browser should open a website where you can review and continue the order.



Alternatively you could also export your LibrePCB project as a *.lppz archive (File

› Export › Export *.lppz Archive) and then upload this file with the web browser
on fab.librepcb.org. This procedure might be useful if for some reason the direct
upload is not desired or doesn’t work (e.g. due to a corporate firewall).

Generate Production Data

Instead of using LibrePCB Fab, of course you can also generate the production data manually and
forward these files to any PCB manufacturer you like.

Currently there exist multiple ways how to generate production data, but it’s recommended to use

the Output Jobs feature for that. Click on File › Output Jobs or press F11 to open the corresponding
window:

29

https://fab.librepcb.org
https://fab.librepcb.org

Then for any output you like to generate, click on the [ + ] button at the bottom left. See the
following sections for details on the available jobs.



Any files generated through output jobs will be written to the path
./output/<VERSION>/ within the project directory, where <VERSION> is the project’s
version number as defined in the Project Setup dialog. So make sure the version
number is set as desired to avoid overwriting e.g. the output files of a previous PCB
version.

Once you set up all output jobs, just click on the "Run all jobs" button and all files will be written to
the output directory. Then click on [ OK ] and save the project to store the output jobs configuration.

Gerber/Excellon

For the Gerber/Excellon production data you need to choose the settings of the Gerber/Excellon
export. There are two different presets built-in, a default style and a Protel style. Generally you
should determine what format your PCB manufacturer accepts. Many manufacturers accept Protel-
style settings, so if you’re unsure, choose Gerber/Excellon (Protel Style).

30

If required, the settings can now be adjusted manually.


It’s highly recommended to cross-check the generated files with third-party tools
like gerbv or the reference Gerber viewer. LibrePCB developers are not
responsible for any implications caused by wrong production data.

Pick&Place Data

If you also need pick&place files for automated assembly, just choose Pick&Place (*.csv) (or
alternatively ther Gerber X3 variant):

31

http://gerbv.geda-project.org
https://gerber.ucamco.com/

Bill of Materials

To get a bill of materials (BOM), add the output job Bill Of Materials (*.csv):

Create Library Elements
Sooner or later you’ll need to create your own library elements in your local library you have
created previously. Open that library in the library manager:

32

The [ New Library Element ] toolbutton (or Ctrl  +  N) in the library editor is the entry point for
every new library element. There you can choose what kind of library element you want to create:

Concept Overview

But first we need a crash course to understand the basics of LibrePCB’s library concept. A library
consists of several different elements:

Component Category

These are basically "metadata-only" elements used to categorize the "real" library elements in a
category tree. Every symbol, component and device can be assigned to one or more categories to
make them browsable in the category tree you used in the schematic editor for adding
components/devices. Examples: Resistors. LEDs, Microcontrollers

Symbol

A symbol is the graphical representation of a component (or parts of it) in a schematic. It
consists of electrical pins and graphical objects like lines. Examples: European Resistor, LED,
1x10 Connector

33

Component

A component basically represents a "generic" kind of electrical part. It’s not a real part which
you can buy, it’s just theoretical. The component defines the electrical interface of a part and
how it is represented in the schematic (by referencing one ore more symbols). But it does not
define how the part looks physically on a board. Examples: Resistor, Bipolar Capacitor, 4-channel
OpAmp

Package Category

Exactly the same as the component category, but for packages instead of components. This
allows to browse packages in a category tree. Examples: Chip Resistors, Axial Capacitors, DIP

Package

As the name suggests, packages represent the mechanical part of a "real" electronic part. It
contains the footprint with their electrical pads and graphical objects which is then added to
boards. Later a package may also contain a 3D model for the 3D board viewer. Examples: TO220,
DIP20, LQFP32

Device

The device now represents a real electronic part which you can buy. It basically combines a
component with a package and defines the pinout to connect component signals with package
pads. Examples: 0805 Resistor, LM358D, STM32F103C



The order of this list is also the order to follow when creating new library
elements. For example a device always needs to be created after the
corresponding component. The other direction is not possible because of the
dependencies.

No worries if this is a bit too much theory for now. The rest of the tutorial is more practical, which
will help you to understand the concept step by step.

Our Example: LMV321LILT

Let’s say you want to create the part LMV321LILT (OpAmp, see datasheet) from A to Z. We will now
create all the necessary library elements for the LMV321LILT, though in practice you only need to
create the elements which do not exist already. You can even use elements from other libraries, for
example the symbol from library X, the component from library Y and the package from library Z.



It’s really important to understand how to re-use already existing components and
packages. In many cases, your desired component (e.g. Single OpAmp) and package
(e.g. SOT23-5) already exist in our libraries. Then the only element you have to
create is the device, which just takes a minute.

If you want to learn the whole concept, follow the tutorial (recommended). If you
only want to create a device, skip the basics and go directly to the device tutorial.

Here an overview which library elements we’ll create for the LMV321LILT:

• Component category: Integrated Circuits › Linear › Amplifiers

34

https://eu.mouser.com/datasheet/2/389/dm00052423-1797584.pdf

• Symbol: Single OpAmp

• Component: Single OpAmp

• Package category: SOT

• Package: SOT23-5

• Device: LMV321LILT

Component Category

First you should create a component category for the LMV321LILT (if it doesn’t exist already). Open

New Library Element › Component Category, choose a suitable (generic!) name and select a
parent category. You may first need to create the required parent categories.



Creating component categories is optional. Everything works even without
creating such categories so if you’re in a hurry, just skip this step. However,
categories help to keep your libraries organized and to quickly find components in
the schematic editor.

In our example, we choose the following properties (any other metadata is optional):

• Name: Amplifiers (since the LMV321LILT is an amplifier)

• Parent: Integrated Circuits › Linear (let’s assume these categories exist already)


If you’re unsure about the category name, take a look at the navigation trees of
digikey.com or mouser.com for inspiration. But don’t use a nesting level higher
than 3 levels (usually 2 levels are enough).

After clicking on [ Finish ], your first component category is already complete! It may just take a

35

https://digikey.com
https://mouser.com

moment for the background library scan until the new component category appears in the category
trees.

▼ Component categories available in the LibrePCB Base library

Symbol

Now we need to create a symbol for the OpAmp. Open New Library Element › Symbol, choose a
name and the component category we just created and click [ Finish ]:

36

Draw Polygons

Now let’s draw the graphical objects of the symbol:

1. Choose a tool. There are several similar tools available, but often you need only the [ Draw
Rectangle ] or the [ Draw Polygon ] tool.

2. Specify the polygon properties. For the symbol’s "body", choose the Outlines layer. When
checking Grab Area, you’ll be able to drag the symbol in the schematic editor by clicking on the
polygon’s area.

3. Draw the polygon with the cursor.

37

Add Texts

Then you should add at least two text objects:

• Name: Using the placeholder {{NAME}} which will be substituted by the component’s designator
(e.g. "R5") in the schematics.

• Value: Using the placeholder {{VALUE}} which will be substituted by the component’s value (e.g.
"100nF") in the schematics.

For convenience, there are dedicated tools for these two text objects. Use them as follows:

1. Start one of the text tools.

2. If needed, adjust the text properties in the toolbar.

3. Place the text object with a mouse click. Press R or Right Click to rotate or M to mirror the
alignment while moving.

38

Add Pins

Then, the most important thing is to add pins since these are required later in the schematics to
attach wires to the symbol.

1. Start the [ Add Pin ] tool.

2. Choose a reasonable (unique!) pin name and length. Press Tab to move the focus into the name
input field.

3. Place the pin with a mouse click. Press R or Right Click to rotate while moving.

39

The overlapping pin texts look a bit ugly, but let’s ignore that for the moment.



It’s not possible to add multiple pins with the same name. If your device for
example has multiple GND pads which are all connected together (i.e. you don’t
need to distinguish between them), add only one GND pin to the symbol. If you
need to distinguish between the different pins, assign unique names (e.g. GND_1,
GND_2 etc.).

Now save the symbol to let the background scan picking up the new symbol (this takes a moment)
before you can use this symbol in a component.

Recommendations

For details about how symbols should be designed, please take a look at our symbol
conventions. The most important rules are:

• For generic components, create generic symbols (e.g. Diode instead of 1N4007).

• The origin (coordinate 0,0) should be in (or close to) the center of the symbol.

• Pins must represent the electrical interface of a part, not the mechanical. So don’t add
multiple pins with the same function (e.g. GND) and don’t name pins according their
location in the package. Name them according their electrical purpose (e.g. IN+, IN-, OUT)
instead, or just use incrementing numbers (i.e. 1, 2, 3, …).

• Pins should be grouped by functionality and placed on the 2.54mm grid.

• There should be text elements for {{NAME}} and {{VALUE}}.

40

Component

The next element you need to create is the component for a single OpAmp. Because it is still very
generic (beside the LMV321LILT there are many other OpAmps with exactly the same
functionality), you should enter a generic name like Single OpAmp.

Open New Library Element › Component, enter the name and assign the component category we
created previously:

Set Properties

After clicking on [ Next ] you’re asked to specify some properties of the component:

Schematic-Only

Check this if the component must not appear on a board, but only in the schematics. This is
typically used for schematic frames.

Prefix

When adding the component to a schematic, its name (designator) is automatically set to this
value, followed by an incrementing number. So if you choose the prefix R, components added to
a schematic will have the names R1, R2, R3 and so on. The prefix should be very short and
uppercase.

Default Value

In addition to the name, components also have a value assigned to it, which is typically also
displayed in the schematic. For example a capacitor has its capacitance (e.g. 100nF) set as its
value. When adding a component to a schematic, its value is initially set to the value specified
here. The value can also be a placeholder, for example {{MPN}}, {{DEVICE}} or {{CAPACITANCE}}. If
you are unsure, just leave it empty, the component editor will help you to assign a value later.

41

Add Symbols (aka Gates)

Now you need to choose the symbols which represent the component in schematics (also called
gates). Most components have only one symbol, but you can also add more than one, for example
an OpAmp could have separate symbols for power and amplifier. In our case, select the Single
OpAmp symbol we created previously:

42

Don’t forget to click on the [ + ] button after closing the symbol chooser dialog. Then click on
[ Next ].

Add Signals

The next step is to define all so-called signals of a component. Signals represent the "electrical
interface" of a component. For example a transistor consists of the signals Base, Collector and
Emitter. For a component it’s irrelevant whether the "real" transistor has multiple emitter pads, or
an additional thermal pad and so on — the component only specifies the three electrical signals.

LibrePCB automatically extracts the signals from the pins of the specified symbols, so often you
don’t have to do this by hand. But sometimes you still should adjust the names or properties of
these signals. For our OpAmp, we check the Required checkbox of all signals to ensure the ERC will
raise a warning if these signals are not connected to a net in the schematics:

43

Connect Pins To Signals

These signals now need to be assigned to the corresponding symbol pins to create the connections.
But since they were automatically generated from the pins, you can just click on [ Automatically
assign all signals by name ]:

Component Editor

After clicking on [ Finish ], the component is complete:

44



For our simple example this procedure might feel a bit complicated. This is due to
the broad flexibility of the LibrePCB library approach which will save time in the
long term due to high reusability of library elements.

The component which we created uses only very basic library features, but as soon
as you understand the library concept in more detail, you will be able to easily
create much more complicated library elements. We’re sure you will learn to love
the flexibility of the library concept step by step.

Recommendations

Following are the most important rules to create reusable components:

• Create generic components whenever possible. Only create specific components for
manufacturer-specific parts (like microcontrollers).

• Generally name signals according their electrical purpose (e.g. Source, Drain, Gate).

45

• Don’t add multiple signals which are considered as connected. Even for a microcontroller
which has multiple GND pins, the component should have only one GND signal. Keep in
mind that a component represents the electrical interface of a part, not the mechanical!

Package Category

Before creating a package for the LMV321LILT, you should (optionally) create a category for it. This
is done exactly the same way as you already created the component category.

Since we need to create a SOT23-5 package, let’s choose the following properties for its category:

• Name: Small-Outline Transistor (SOT)

• Parent: Transistor (let’s assume this category exists already)

With a click on [ Finish ] the package category is complete and after a moment the new category is
ready to use.

▼ Package categories available in the LibrePCB Base library

46

Package

Then you need to create the package for the LMV321LILT, which is called SOT23-5. As usual, open

New Library Element › Package and specify the name and category:

Add Pads

Now you need to specify all pads of the package. The SOT23-5 has 5 pads named from 1 to 5, so you
can just enter the term 1..5 and click on the [ + ] button:

47



When adding the pads, don’t consider their electrical functions or internal
connections. For example if a transistor with three electrical signals has three pads
plus a thermal pad connected to one of the other signals, the package has four
pads in total. It’s not relevant whether some of them are connected to each other
within the package.

General rule of thumb: If in doubt, better specify too many pads than too few ;-)

Place Pads

After clicking on [ Finish ], you can draw the footprint. It’s recommended to start with placing the
pads:

1. Set a reasonable grid interval with the [ Grid Properties ] toolbutton.

2. Start either the [ Add THT Pad ] or [ Add SMT Pad ] tool.

3. Choose the package pad to place and specify its properties, most notably the shape and size.

4. Place the pad with a click. Press R to rotate it while moving.

48


The tool only allows to place pads on the grid. To specify exact coordinates, just
place the pads rougly and open [ Properties ] from the pad’s context menu (right-
click) afterwards to enter exact values.

Draw Polygons

Then add graphical object just as done in the symbol editor:

49



It’s recommended to add at least two polygons:

• One on the Top Documentation layer to represent the body outline of the
package. This layer will appear on assembly drawings, but not on the PCB
silkscreen.

• One on the Top Legend layer to include a placement help which will be visible
on the PCB silkscreen — most notably pad-1 markings.

To create highly functional, beautiful looking footprints, check out our package
conventions.

Add Texts

Just like in the symbol, you should add {{NAME}} and a {{VALUE}} text objects:

50

Add Non-Plated Holes

In case your package requires to drill non-plated holes into the PCB (for example to insert a screw),
use the [ Add Hole ] tool and specify its diameter. However, for our SOT23-5 package we don’t need
a hole.

That’s all you need for a simple package! Now save the package to ensure the background library
scan picks up the new package.

Add 3D Model

If you have a STEP file of the package, you can add it as a 3D model to the package. Switch to the 3D

mode with View › Toggle 2D/3D Mode or by pressing Ctrl  +  3 . Then click on the [ + ] button to
import the STEP file (this may take a while):

51

If required, the position and rotation can be adjusted in the footprint variants table.

Recommendations

For details about how packages should be designed, please take a look at our package
conventions. The most important rules are:

• Create generic packages, not specific ones. For example DIP08 is DIP08 — no matter
whether it’s an OpAmp, an EEPROM or a microcontroller.

• The origin (coordinate 0,0) should be in (or near to) the center of the package body.

• Footprints must always be drawn from the top-view. When a footprint needs to appear on
the bottom of a board, this can be done in the board by flipping it.

• Add all pads of a package, not only the one you currently need. For example if the package
has a thermal pad, you should add it, even if you currently don’t need it.

• Name pads according IPC-7351 (if applicable; see package conventions for more
information), typically just 1, 2, 3 etc. Only name pads according their electrical purpose
(e.g. Anode) if the package is very specific for a particular purpose (like an LED).

• Pad 1 should always be at the top left.

• There should be text elements for {{NAME}} and {{VALUE}}.

52

Device

The last library element you need to create is the device which combines the component Single
OpAmp with the package SOT23-5. This is actually the only library element which is specifically for
LMV321LILT — all previously created elements are generic and reusable for other OpAmps!

Again, open New Library Element › Device and specify the name and category for the new device:

Choose Component & Package

After clicking [ Next ], you need to choose the component and package we created for this device:

53

Then click on [ Finish ].

Connect Pads To Signals

Now you have to connect the package pads to component signals according to the pinout in the
datasheet of LMV321LILT:

Then save the device to finish it and quickly wait until the background library scan completes
before adding the new device to a project.

And that’s it! The LMV321LILT is now ready to be added to schematics and boards. And because the
categories, symbol, component and package are very generic, you created not only one single
device, but the basement for many more devices in the future! For any additional single-channel
OpAmp (with an already available package), you need to create only a device which is now a matter
of a minute.

[1] Manufacturer part number

[2] Bill of materials

[3] Electrical rule check

54

User Manual
Sorry, the user manual is not available yet :-(

Help us creating it on GitHub!

55

https://github.com/LibrePCB/librepcb-doc

Command-Line Interface
LibrePCB also provides a command line interface (CLI). With that tool, you can automate some
tasks, for example on Continuous Integration (CI) systems.



Running On Headless Linux

Please note that (at this time) librepcb-cli requires a running X-server even if it
doesn’t open any windows. If your system doesn’t have an X-server running, you
can use xvfb instead:

xvfb-run -a librepcb-cli [args]

If the librepcb-cli executable still doesn’t work, you may need to install some
dependencies. On Debian/Ubuntu, following packages need to be installed:

apt-get install libfontconfig1 libglib2.0-0 libglu1-mesa

Installation

Binary Releases

Our official LibrePCB binary releases contain the librepcb-cli executable next to the GUI
application, so usually no separate installation is needed. But there are two exceptions: The
AppImage and the macOS bundle.

Linux AppImage

Download librepcb-cli-1.0.0-linux-x86_64.AppImage, make it executable and run it:

wget "https://download.librepcb.org/releases/1.0.0/librepcb-cli-1.0.0-linux-
x86_64.AppImage"
chmod +x ./librepcb-cli-1.0.0-linux-x86_64.AppImage
./librepcb-cli-1.0.0-linux-x86_64.AppImage

macOS Bundle

Download the portable *.dmg file matching your CPU architecture:

• Intel (x86_64): librepcb-cli-1.0.0-mac-x86_64.dmg

• Apple Silicon (arm64): librepcb-cli-1.0.0-mac-arm64.dmg

Double-click the downloaded file in Finder. Then drag and drop the app onto the "Applications"
folder in Finder.

56

https://en.wikipedia.org/wiki/Xvfb
https://download.librepcb.org/releases/1.0.0/librepcb-cli-1.0.0-linux-x86_64.AppImage
https://download.librepcb.org/releases/1.0.0/librepcb-cli-1.0.0-mac-x86_64.dmg
https://download.librepcb.org/releases/1.0.0/librepcb-cli-1.0.0-mac-arm64.dmg

Docker Image

The easiest way to get the LibrePCB CLI on Linux (especially for usage on CI) is to pull our official
Docker image librepcb/librepcb-cli:

docker run -it --rm -v `pwd`:/work -u `id -u`:`id -g` \
 librepcb/librepcb-cli:1.0.0 --help

Show Help Text
Usage instructions and available options can be shown with --help:

Command

./librepcb-cli --help

Output

Usage: ./librepcb-cli [options] command
LibrePCB Command Line Interface

Options:
 -h, --help Print this message.
 -V, --version Displays version information.
 -v, --verbose Verbose output.

Arguments:
 command The command to execute (see list below).

Commands:
 open-library Open a library to execute library-related tasks.
 open-project Open a project to execute project-related tasks.
 open-step Open a STEP model to execute STEP-related tasks outside of a library.

List command-specific options:
 ./librepcb-cli <command> --help

Command "open-library"
This command opens a LibrePCB library and lets you execute some tasks with it.

Command

./librepcb-cli open-library --help

57

https://hub.docker.com/r/librepcb/librepcb-cli

Output

Usage: ./librepcb-cli [options] open-library [command_options] library
LibrePCB Command Line Interface

Options:
 -h, --help Print this message.
 -V, --version Displays version information.
 -v, --verbose Verbose output.
 --all Perform the selected action(s) on all elements contained in
 the opened library.
 --check Run the library element check, print all non-approved messages
 and report failure (exit code = 1) if there are non-approved
 messages.
 --minify-step Minify the STEP models of all packages. Only works in
 conjunction with '--all'. Pass '--save' to write the minified
 files to disk.
 --save Save library (and contained elements if '--all' is given)
 before closing them (useful to upgrade file format).
 --strict Fail if the opened files are not strictly canonical, i.e.
 there would be changes when saving the library elements.

Arguments:
 open-library Open a library to execute library-related tasks.
 library Path to library directory (*.lplib).

Examples

Check Library Elements and Upgrade File Format
This command is useful for Continuous Integration of LibrePCB libraries because it reports failure
if you check in libraries with invalid or non-canonical S-Expression files or STEP models. In
addition, the library check is run (--check) and reports failure if there are any non-approved
messages.

Command

./librepcb-cli open-library --all --check --minify-step --strict MyLibrary.lplib

Output

Open library 'MyLibrary.lplib'...
Process 86 component categories...
Process 44 package categories...
Process 37 symbols...
Process 492 packages...
Process 34 components...
Process 37 devices...

58

SUCCESS

Command "open-project"
This command opens a LibrePCB project and lets you execute some tasks with it.

Command

./librepcb-cli open-project --help

Output

Usage: ./librepcb-cli [options] open-project [command_options] project
LibrePCB Command Line Interface

Options:
 -h, --help Print this message.
 -V, --version Displays version information.
 -v, --verbose Verbose output.
 --erc Run the electrical rule check, print all
 non-approved warnings/errors and report
 failure (exit code = 1) if there are
 non-approved messages.
 --drc Run the design rule check, print all
 non-approved warnings/errors and report
 failure (exit code = 1) if there are
 non-approved messages.
 --drc-settings <file> Override DRC settings by providing a *.lp
 file containing custom settings. If not
 set, the settings from the boards will be
 used instead.
 --run-job <name> Run a particular output job. Can be given
 multiple times to run multiple jobs.
 --run-jobs Run all existing output jobs.
 --jobs <file> Override output jobs with a *.lp file
 containing custom jobs. If not set, the
 jobs from the project will be used instead.
 --outdir <path> Override the output base directory of
 jobs. If not set, the standard output
 directory from the project is used.
 --export-schematics <file> Export schematics to given file(s).
 Existing files will be overwritten.
 Supported file extensions: pdf, svg, bmp,
 cur, ico, jpeg, jpg, pbm, pgm, png, ppm,
 xbm, xpm
 --export-bom <file> Export generic BOM to given file(s).
 Existing files will be overwritten.
 Supported file extensions: csv
 --export-board-bom <file> Export board-specific BOM to given

59

 file(s). Existing files will be
 overwritten. Supported file extensions: csv
 --bom-attributes <attributes> Comma-separated list of additional
 attributes to be exported to the BOM.
 Example: "SUPPLIER, SKU"
 --export-pcb-fabrication-data Export PCB fabrication data
 (Gerber/Excellon) according the fabrication
 output settings of boards. Existing files
 will be overwritten.
 --pcb-fabrication-settings <file> Override PCB fabrication output settings
 by providing a *.lp file containing custom
 settings. If not set, the settings from the
 boards will be used instead.
 --export-pnp-top <file> Export pick&place file for automated
 assembly of the top board side. Existing
 files will be overwritten. Supported file
 extensions: csv, gbr
 --export-pnp-bottom <file> Export pick&place file for automated
 assembly of the bottom board side. Existing
 files will be overwritten. Supported file
 extensions: csv, gbr
 --export-netlist <file> Export netlist file for automated PCB
 testing. Existing files will be
 overwritten. Supported file extensions:
 d356
 --board <name> The name of the board(s) to export. Can be
 given multiple times. If not set, all
 boards are exported.
 --board-index <index> Same as '--board', but allows to specify
 boards by index instead of by name.
 --remove-other-boards Remove all boards not specified with
 '--board[-index]' from the project before
 executing all the other actions. If
 '--board[-index]' is not passed, all boards
 will be removed. Pass '--save' to save the
 modified project to disk.
 --variant <name> The name of the assembly variant(s) to
 export. Can be given multiple times. If not
 set, all assembly variants are exported.
 --variant-index <index> Same as '--variant', but allows to specify
 assembly variants by index instead of by
 name.
 --set-default-variant <name> Move the specified assembly variant to the
 top before executing all the other actions.
 Pass '--save' to save the modified project
 to disk.
 --save Save project before closing it (useful to
 upgrade file format).
 --strict Fail if the project files are not strictly
 canonical, i.e. there would be changes when
 saving the project. Note that this option

60

 is not available for *.lppz files.

Arguments:
 open-project Open a project to execute project-related
 tasks.
 project Path to project file (*.lpp[z]).

Examples

Run ERC, DRC and Output Jobs
This command is useful for Continuous Integration of LibrePCB projects because it reports failure if
you check in projects with non-approved ERC or DRC messages. In addition, it generates all
production data files of the configured output jobs so you don’t have to do it manually.

Command

./librepcb-cli open-project --erc --drc --run-jobs MyProject.lpp

Output

Open project 'MyProject.lpp'...
Run ERC...
 Approved messages: 7
 Non-approved messages: 2
 - [WARNING] Net signal connected to less than two pins: "CAN_RX"
 - [WARNING] Net signal connected to less than two pins: "JTCK"
Run DRC...
 Board 'default':
 Approved messages: 0
 Non-approved messages: 5
 - [ERROR] Clearance copper ↔ hole < 0.25 mm
 - [ERROR] Clearance copper ↔ hole < 0.25 mm
 - [ERROR] Clearance drill ↔ drill < 0.35 mm
 - [ERROR] Clearance plane ↔ board outline < 0.3 mm
 - [ERROR] Clearance plane ↔ board outline < 0.3 mm
Run output job 'Schematic PDF'...
 => 'output/v1/MyProject_v1_Schematic.pdf'
Run output job 'Gerber/Excellon'...
 => 'output/v1/gerber/MyProject_v1_DRILLS-NPTH.drl'
 => 'output/v1/gerber/MyProject_v1_DRILLS-PTH.drl'
 => 'output/v1/gerber/MyProject_v1_OUTLINES.gbr'
 => 'output/v1/gerber/MyProject_v1_COPPER-TOP.gbr'
 => 'output/v1/gerber/MyProject_v1_COPPER-BOTTOM.gbr'
 => 'output/v1/gerber/MyProject_v1_SOLDERMASK-TOP.gbr'
 => 'output/v1/gerber/MyProject_v1_SOLDERMASK-BOTTOM.gbr'
 => 'output/v1/gerber/MyProject_v1_SILKSCREEN-TOP.gbr'
 => 'output/v1/gerber/MyProject_v1_SILKSCREEN-BOTTOM.gbr'
 => 'output/v1/gerber/MyProject_v1_SOLDERPASTE-TOP.gbr'

61

 => 'output/v1/gerber/MyProject_v1_SOLDERPASTE-BOTTOM.gbr'
Finished with errors!

In this example, the application reported errors and exited with code 1 because there are non-
approved ERC/DRC messages.

62

Library Conventions
Here we collect conventions / guidelines to be used when designing libraries.


These guidelines are not yet complete. Help us create sensible conventions on
GitHub!

Symbol Conventions


These guidelines are not yet complete. Help us create sensible conventions on
GitHub!

Generic vs. Specific

Generic components should have generic symbols. For example a diode (let’s say 1N4007) doesn’t
need its own symbol, a generic diode symbol is fine. So you should name it something like "Diode"
and use the same symbol also for all other standard diodes. Of course every kind of diode (e.g.
Zener) should have its own symbol because they look different.

On the other side, there are many very specific components, for example a microcontroller. Even if
it’s possible to also use generic symbols for them (e.g. "32-Pin IC"), you should create a symbol
specific for that part instead. This way you can choose a reasonable pin placement.

Naming

Following conventions apply to symbol names:

• Language must be American English (en_US)

• Title case (e.g. "Capacitor Bipolar" instead of "Capacitor bipolar")

• Singular names, not plural (e.g. "Diode" instead of "Diodes")

• If reasonable, start with the generic term (e.g. "Supply GND" instead of "GND Supply") to
improve navigation in sorted lists (all supply symbols are listed next to each other)

63

https://github.com/LibrePCB/librepcb-doc
https://github.com/LibrePCB/librepcb-doc
https://github.com/LibrePCB/librepcb-doc/issues?q=is%3Aissue+label%3A%22Conventions%3A+Symbols%22
https://github.com/LibrePCB/librepcb-doc/issues?q=is%3Aissue+label%3A%22Conventions%3A+Symbols%22

Origin

The origin (0, 0) must be at the center of the symbol (not including text elements). For non-
symmetrical symbols it should be as close as possible to the center, but still on the 2.54mm grid.

Outline

The outline of a regular symbol should be drawn with a rectangle or a polygon. All vertices should
be located on the 2.54mm grid and following properties should be used:

• Layer: Outlines

• Line Width: 0.2 mm

• Filled: no

• Grab Area: yes

Special symbols (like a capacitor) might not have a regular outline, in such cases it’s allowed to use
different properties to draw the symbol geometry.

64

Pin Placement

• For integrated circuit symbols (i.e. rectangular outline), generally don’t place pins at the top
and bottom edges, but only on the left and the right. This helps to get clear, easily readable
schematics.

• Group pins by functionality, not by physical location of the leads or by datasheet. Always keep
the typical application circuit in mind and choose pin locations which help to get clear
schematics with only few crossed-over net lines. For example put GND exactly 5.08mm below
the VCC pin if it’s likely that capacitors need to be connected to them (capacitors have a height
of 5.08mm). Or place D+ and D- of a USB device right on top of each other (with the default
distance of 2.54mm) as they are always used as a pair.

• Use a pin length of 2.54mm if possible. Other pin lengths should be used only in special cases.

Pin Naming

If the function of a pin is absolutely clear (e.g. anode/cathode of a diode), choose its abbreviated
functionality as name (e.g. "A" for anode and "C" for cathode). If the functionality is not clear in the
symbol (because it’s defined by the component using that symbol), just use numbers starting with
"1" at top left and increment them counterclockwise.

Text Elements

Typical symbols should have exactly two text elements: {{NAME}} and {{VALUE}}.

For rectangular symbols, the name should be placed at top left,
aligned at bottom left to the corner of the symbol outlines. And
the value should be placed at bottom left, aligned at the top left
to the corner of the symbol outlines.

Irregularly shaped symbols may have text elements placed differently,
see for example the crystal at the left. Keep in mind that the value of a
component can consist of several lines, so there should always be enough
space available for it.

Typical text element properties

Property Name text element Value text element

Layer Names Values

Text {{NAME}} {{VALUE}}

Alignment Bottom Left Top Left

Height 2.5mm 2.5mm

Rotation 0° 0°

65

Grab Area

The grab area is the region of a symbol where it can be grabbed with the mouse (to move it, or to
open the context menu). Symbols which have a single outline (like an IC) should typically have the
"Grab Area" property set on the outline polygon (which makes the area filled with yellow color).

For symbols which have a more complex outline or which do not look nice
with the yellow fill you should add an extra polygon to explicitly define the
grab area. See the blue area of the push button for example. Ensure that the
polygon doesn’t overlap with pins and use following polygon properties:

• Layer: Hidden Grab Areas (will not be visible in the schematic editor)

• Line Width: 0.0 mm

• Filled: yes

• Grab Area: yes


The origin cross of a symbol is always also an implicit grab area. So even if there is
no explicit grab area defined, the symbol can still be grabbed.

Package Conventions


These guidelines are not yet complete. Help us create sensible conventions on
GitHub!

Scope

The most important thing to consider when creating a package is the scope of it. Since LibrePCB
handles footprints differently than other EDA tools, special attention is required here.

Think about the appearance of the part (the mechanical shape, dimension and color). If two parts
look exactly (or almost) equal, they can use the same package. If they look different, two separate
packages must be created.



Don’t think about the land pattern (i.e. footprint) of the part — it’s not relevant
for this decision. Even if a package can be mounted differently on a PCB (e.g. a THT
resistor can be mount horizontally or vertically) and thus require different
footprints, only one package is needed. Similarly, two different-looking parts that
have the same land pattern (e.g. a SMD resistor and a SMD LED) should still be two
separate packages.

Example 1. Color (e.g. 0805 LED)

Even if a 0805 LED with a transparent lens has exactly the same footprint as a 0805 LED with a

66

https://github.com/LibrePCB/librepcb-doc/issues?q=is%3Aissue+label%3A%22Conventions%3A+Packages%22
https://github.com/LibrePCB/librepcb-doc/issues?q=is%3Aissue+label%3A%22Conventions%3A+Packages%22

red lens, they should have separate packages because of the different color. This way a
device can link to the package with the proper color, and thus it will appear with the proper
color in the 3D PCB preview (once LibrePCB supports 3D models).

Example 2. Height (e.g. SO-8)

Some packages are available in different heights. For instance, SO-8 is available with heights of
1.2mm and 1.4mm. As the 3D models would be different, separate packages are needed.

Note: To avoid creating too many packages, a small tolerance is allowed. So for a device with a
height of 1.3mm you might want to use the package with a height of 1.4mm.

Example 3. Mounting variants (e.g. TO220)

Many packages can be mounted either vertically or horizontally, for example the TO220. If
mounted horizontally, there might be a hole in the PCB to screw the metal tab down to the PCB,
or you may want to solder the tab to the PCB without a hole in it. For all these cases only one
package is needed — the different mounting variants should be handled by different footprint
variants inside the package.

Naming

The following conventions apply to package names:

• We generally follow IPC-7351 when naming packages (e.g. "SOT23-5P95_280X145L60" instead
of "SOT23-5"). Alternative names (like "SOT23-5") should be added to the comma-separated
keywords list and maybe to the description.

• For packages not covered by IPC-7351, use following naming conventions:

◦ Language must be American English (en_US), if applicable (many packages have language-
neutral names anyway).

◦ Size information must use metric units, not imperial units.

◦ For packages which are available with different pin counts, append the pin count with a
hyphen as separator and omit leading zeros (e.g. "DIP-8" instead of "DIP08").

• For packages which are well known by their size in imperial units (e.g. "0805" which is "2012" in
metric), it’s recommended to write the well known name in parentheses. For example, a chip
resistor could be named "RESC2012X70 (0805)".

• The name of manufacturer-specific packages should start with the manufacturers name (e.g.
"Molex 53261-06"). Note: Libraries do not act as namespaces for package names, so you should
start the package name with the manufacturers name even if the package is located in a
manufacturer-specific library.

Pads

• Always add all pads of packages, even those which are not always connected. For example, the

67

package "TO220" has a metal tab, so you should define it as a pad, no matter if it’s often not
connected (and even not connectable when mounted vertically).

• Use pad names according IPC-7351 (if applicable). For packages which are not covered by IPC-
7351:

◦ If the function of a pad is absolutely clear, choose its abbreviated functionality as name (e.g.
"A" for anode and "C" for cathode).

◦ Otherwise just use numbers starting with "1" at top left and increment them
counterclockwise.

Footprints

Within a package there can be multiple footprint variants. They are intended to support the
following use-cases:

• Mounting variants: For example, a THT resistor can be mounted either vertically or
horizontally with various pad distances. Every common mounting variant should be available
as footprint variants.

• Soldering techniques: Many packages can be soldered either by reflow-, wave- or hand-
soldering, which usually require different land patterns. For every suitable soldering technique
there could be a corresponding footprint variant.

• Density levels: IPC-7351 specifies three different density levels for footprints:

◦ Density Level A: Maximum (Most) Land Protrusion

◦ Density Level B: Median (Nominal) Land Protrusion

◦ Density Level C: Minimum (Least) Land Protrusion

If applicable, these three density levels should also be added as footprint variants.



Combinations

As a given package might support multiple of the use-cases above, all suitable
combinations of them should be added. For example a package which should have
all three density levels as defined in IPC-7351 and can be mounted either vertically
or horizontally would need six footprint variants to support all possible use-cases.



Set default footprint

The first footprint is always the default footprint, so you should move the most
reasonable footprint to the top of the footprint list! The default footprint should
fulfill these rules:

• Generic packages: Designed according to IPC density level B (if applicable)

• Manufacturer-specific packages: Designed according to datasheet

• Suitable for reflow soldering (if applicable)

• Most natural mounting variant (e.g. horizontal for THT resistors, or vertical for
Transistor Outline packages)

68

https://web.archive.org/web/20190824094512/http://pcbget.ru/Files/Standarts/IPC_7351.pdf
https://web.archive.org/web/20190824094512/http://pcbget.ru/Files/Standarts/IPC_7351.pdf

Example 4. THT resistor 0207 footprint variants

Origin

The origin (0, 0) should be exactly at the center of the package body. It is used by pick and place
machines.

Some packages (especially those with non-symmetrical body) have the origin explicitly specified in
the datasheet. In that case, use the origin from the datasheet.

Orientation

Footprints must be drawn from the top-view. When a footprint needs to appear on the bottom of
a board, this can be done in the board editor by mirroring it.

Pin 1 should always be at the top left, as defined in IPC-7351C "Level A", slide 22.

Example 5. Footprint orientation examples

69

https://web.archive.org/web/20190712122301/http://www.ocipcdc.org/archive/What_is_New_in_IPC-7351C_03_11_2015.pdf

Legend Layer


In LibrePCB 0.1.x, these layers were called Top/Bottom Placement. Starting with
LibrePCB 1.0, they are now called Top/Bottom Legend.

The Top Legend layer is intended to be printed on silkscreen and thus should contain information
required for assembling the PCB. But don’t put too many things on that layer as it would waste
space on the PCB!

Typically this layer should only contain some lines and dots to indicate where and in which
orientation the device gets assembled, for example an outline and a dot next to pin 1.

The legend should be drawn according to IPC-7351C. The most important rules are the following:

• It should stay visible after assembling the package to allow reviewing positioning and
orientation of assembled devices. In other words, the legend layer should primarily contain
drawings around the package’s body, but not under it.

• Line width: 0.2mm typical, 0.1mm minimum

• Clearance to copper layers: Equal or greater than the line width, but at least 0.15mm

Example 6. Legend layer examples (only legend and copper layers shown)

Documentation Layer

The layer Top Documentation should be used to draw the most important details of the package’s
appearance. It could be considered as an alternative to the 3D model of a package. But in contrast to
the 3D model, the documentation layer is visible in the board editor while layouting the PCB.

70

https://web.archive.org/web/20190712122301/http://www.ocipcdc.org/archive/What_is_New_in_IPC-7351C_03_11_2015.pdf

Following things should be placed on the documentation layer:

• The package’s exact outline. Attention: The outer edges of the lines should correspond to the
package’s edges, not the middle of the lines! So, for example if the body is 5x5mm and the line
width 0.2mm, you have to draw a 4.8x4.8mm rectangle.

• The top view of the leads/legs: The leads or legs of both THT and SMT pads should be drawn
from the top view, i.e. the vertical projection of them. This is needed to make packages look
realistic on the documentation layer, as leads and legs are an important part of the appearance
of packages.

• The contact area of SMT leads: The area where SMT leads touch the copper land pattern
should be drawn as filled polygons with a line width of 0mm. This helps the PCB designer to
see the expansion of the land pattern, i.e. how much copper is around the actual lead.

Example 7. Documentation layer examples (only documentation and copper layers shown)

Text Elements

Typical footprints should have exactly two text elements: {{NAME}} and {{VALUE}}.

The name should normally be placed at top of the package body, slightly above the outline and
aligned at bottom center. The value should be placed at the bottom center, slightly below the
package body and aligned at the top center.

Always make sure that the text elements do not overlap with pads or with the placement
layer. Otherwise the text might be unreadable on silkscreen. In addition, text elements should

71

usually be placed outside the package body to still see them on silkscreen of an assembled PCB.

Keep in mind that the bottom-aligned anchor is placed on the text baseline. This means that some
letters like "g" or "y" might extend slightly below the anchor.

Figure 1. Typical footprint name properties

Typical text element properties

Property Name text element Value text element

Layer Top Names Top Values

Text {{NAME}} {{VALUE}}

Alignment Bottom Center Top Center

Height 1.0mm (or larger) 1.0mm (or larger)

Stroke Width 0.2mm (or thicker) 0.2mm (or thicker)

Letter Spacing Auto Auto

Line Spacing Auto Auto

Mirror No No

Auto-Rotate Yes Yes



Special cases

These rules should be fine for many packages, but probably not for all of them. For
special cases it’s allowed to have slightly different properties if they are more
suitable.

72

Example 8. Footprint text element examples

73

Development
For developers of LibrePCB, or of you’re interested in technical details of LibrePCB, check out the
developers documentation at developers.librepcb.org.

74

https://developers.librepcb.org

	LibrePCB
	Table of Contents
	Installation
	Official Binaries
	Distribution Packages
	Build From Sources
	On Windows
	Online Installer
	Portable Package

	On Linux
	Portable AppImage (x86_64)
	Snap Package (multi-arch)
	FlatPak (multi-arch)
	Online Installer (abandoned)

	On macOS
	Portable Package
	Online Installer (abandoned)

	Build From Sources
	Requirements
	Get the Sources
	Build LibrePCB
	Additional Resources

	Quickstart Tutorial
	Create a Workspace
	Install Remote Libraries
	Create a Local Library
	Create a PCB Project
	Create Schematics
	Create Board
	Order PCB

	Create Library Elements
	Concept Overview
	Our Example: LMV321LILT
	Component Category
	Symbol
	Component
	Package Category
	Package
	Device

	User Manual
	Command-Line Interface
	Installation
	Binary Releases
	Docker Image

	Show Help Text
	Command "open-library"
	Examples

	Command "open-project"
	Examples

	Library Conventions
	Symbol Conventions
	Generic vs. Specific
	Naming
	Origin
	Outline
	Pin Placement
	Pin Naming
	Text Elements
	Grab Area

	Package Conventions
	Scope
	Naming
	Pads
	Footprints
	Origin
	Orientation
	Legend Layer
	Documentation Layer
	Text Elements

	Development

